$$$\frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}$$$ 的积分

该计算器将求出$$$\frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}\, dx$$$

解答

输入已重写为:$$$\int{\frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3} d x}=\int{x^{2} \left(1 - \frac{1}{3 x^{2}}\right) d x}$$$

Expand the expression:

$${\color{red}{\int{x^{2} \left(1 - \frac{1}{3 x^{2}}\right) d x}}} = {\color{red}{\int{\left(x^{2} - \frac{1}{3}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(x^{2} - \frac{1}{3}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{3} d x} + \int{x^{2} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=\frac{1}{3}$$$

$$\int{x^{2} d x} - {\color{red}{\int{\frac{1}{3} d x}}} = \int{x^{2} d x} - {\color{red}{\left(\frac{x}{3}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$- \frac{x}{3} + {\color{red}{\int{x^{2} d x}}}=- \frac{x}{3} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \frac{x}{3} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

因此,

$$\int{x^{2} \left(1 - \frac{1}{3 x^{2}}\right) d x} = \frac{x^{3}}{3} - \frac{x}{3}$$

化简:

$$\int{x^{2} \left(1 - \frac{1}{3 x^{2}}\right) d x} = \frac{x \left(x^{2} - 1\right)}{3}$$

加上积分常数:

$$\int{x^{2} \left(1 - \frac{1}{3 x^{2}}\right) d x} = \frac{x \left(x^{2} - 1\right)}{3}+C$$

答案

$$$\int \frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}\, dx = \frac{x \left(x^{2} - 1\right)}{3} + C$$$A


Please try a new game Rotatly