$$$- \frac{6}{\sqrt{y^{3}}} + \frac{3}{\sqrt{y}}$$$ 的积分

该计算器将求出$$$- \frac{6}{\sqrt{y^{3}}} + \frac{3}{\sqrt{y}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- \frac{6}{\sqrt{y^{3}}} + \frac{3}{\sqrt{y}}\right)\, dy$$$

解答

输入已重写为:$$$\int{\left(- \frac{6}{\sqrt{y^{3}}} + \frac{3}{\sqrt{y}}\right)d y}=\int{\left(\frac{3}{\sqrt{y}} - \frac{6}{y^{\frac{3}{2}}}\right)d y}$$$

逐项积分:

$${\color{red}{\int{\left(\frac{3}{\sqrt{y}} - \frac{6}{y^{\frac{3}{2}}}\right)d y}}} = {\color{red}{\left(- \int{\frac{6}{y^{\frac{3}{2}}} d y} + \int{\frac{3}{\sqrt{y}} d y}\right)}}$$

$$$c=6$$$$$$f{\left(y \right)} = \frac{1}{y^{\frac{3}{2}}}$$$ 应用常数倍法则 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$

$$\int{\frac{3}{\sqrt{y}} d y} - {\color{red}{\int{\frac{6}{y^{\frac{3}{2}}} d y}}} = \int{\frac{3}{\sqrt{y}} d y} - {\color{red}{\left(6 \int{\frac{1}{y^{\frac{3}{2}}} d y}\right)}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{3}{2}$$$

$$\int{\frac{3}{\sqrt{y}} d y} - 6 {\color{red}{\int{\frac{1}{y^{\frac{3}{2}}} d y}}}=\int{\frac{3}{\sqrt{y}} d y} - 6 {\color{red}{\int{y^{- \frac{3}{2}} d y}}}=\int{\frac{3}{\sqrt{y}} d y} - 6 {\color{red}{\frac{y^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}=\int{\frac{3}{\sqrt{y}} d y} - 6 {\color{red}{\left(- 2 y^{- \frac{1}{2}}\right)}}=\int{\frac{3}{\sqrt{y}} d y} - 6 {\color{red}{\left(- \frac{2}{\sqrt{y}}\right)}}$$

$$$c=3$$$$$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$ 应用常数倍法则 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$

$${\color{red}{\int{\frac{3}{\sqrt{y}} d y}}} + \frac{12}{\sqrt{y}} = {\color{red}{\left(3 \int{\frac{1}{\sqrt{y}} d y}\right)}} + \frac{12}{\sqrt{y}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$

$$3 {\color{red}{\int{\frac{1}{\sqrt{y}} d y}}} + \frac{12}{\sqrt{y}}=3 {\color{red}{\int{y^{- \frac{1}{2}} d y}}} + \frac{12}{\sqrt{y}}=3 {\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}} + \frac{12}{\sqrt{y}}=3 {\color{red}{\left(2 y^{\frac{1}{2}}\right)}} + \frac{12}{\sqrt{y}}=3 {\color{red}{\left(2 \sqrt{y}\right)}} + \frac{12}{\sqrt{y}}$$

因此,

$$\int{\left(\frac{3}{\sqrt{y}} - \frac{6}{y^{\frac{3}{2}}}\right)d y} = 6 \sqrt{y} + \frac{12}{\sqrt{y}}$$

化简:

$$\int{\left(\frac{3}{\sqrt{y}} - \frac{6}{y^{\frac{3}{2}}}\right)d y} = \frac{6 \left(y + 2\right)}{\sqrt{y}}$$

加上积分常数:

$$\int{\left(\frac{3}{\sqrt{y}} - \frac{6}{y^{\frac{3}{2}}}\right)d y} = \frac{6 \left(y + 2\right)}{\sqrt{y}}+C$$

答案

$$$\int \left(- \frac{6}{\sqrt{y^{3}}} + \frac{3}{\sqrt{y}}\right)\, dy = \frac{6 \left(y + 2\right)}{\sqrt{y}} + C$$$A


Please try a new game Rotatly