$$$- \frac{3}{\sqrt{y^{3}}}$$$ 的积分

该计算器将求出$$$- \frac{3}{\sqrt{y^{3}}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- \frac{3}{\sqrt{y^{3}}}\right)\, dy$$$

解答

输入已重写为:$$$\int{\left(- \frac{3}{\sqrt{y^{3}}}\right)d y}=\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y}$$$

$$$c=-3$$$$$$f{\left(y \right)} = \frac{1}{y^{\frac{3}{2}}}$$$ 应用常数倍法则 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$

$${\color{red}{\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y}}} = {\color{red}{\left(- 3 \int{\frac{1}{y^{\frac{3}{2}}} d y}\right)}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{3}{2}$$$

$$- 3 {\color{red}{\int{\frac{1}{y^{\frac{3}{2}}} d y}}}=- 3 {\color{red}{\int{y^{- \frac{3}{2}} d y}}}=- 3 {\color{red}{\frac{y^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}=- 3 {\color{red}{\left(- 2 y^{- \frac{1}{2}}\right)}}=- 3 {\color{red}{\left(- \frac{2}{\sqrt{y}}\right)}}$$

因此,

$$\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y} = \frac{6}{\sqrt{y}}$$

加上积分常数:

$$\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y} = \frac{6}{\sqrt{y}}+C$$

答案

$$$\int \left(- \frac{3}{\sqrt{y^{3}}}\right)\, dy = \frac{6}{\sqrt{y}} + C$$$A


Please try a new game Rotatly