$$$\frac{\ln^{2}\left(x\right)}{x}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$。
解答
应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$:
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$
因此,
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$
加上积分常数:
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$
答案
$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A
Please try a new game Rotatly