$$$\frac{y^{3}}{1 - y}$$$ 的积分

该计算器将求出$$$\frac{y^{3}}{1 - y}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{y^{3}}{1 - y}\, dy$$$

解答

由于分子次数不小于分母次数,进行多项式长除法(步骤见»):

$${\color{red}{\int{\frac{y^{3}}{1 - y} d y}}} = {\color{red}{\int{\left(- y^{2} - y - 1 + \frac{1}{1 - y}\right)d y}}}$$

逐项积分:

$${\color{red}{\int{\left(- y^{2} - y - 1 + \frac{1}{1 - y}\right)d y}}} = {\color{red}{\left(- \int{1 d y} - \int{y d y} - \int{y^{2} d y} + \int{\frac{1}{1 - y} d y}\right)}}$$

应用常数法则 $$$\int c\, dy = c y$$$,使用 $$$c=1$$$

$$- \int{y d y} - \int{y^{2} d y} + \int{\frac{1}{1 - y} d y} - {\color{red}{\int{1 d y}}} = - \int{y d y} - \int{y^{2} d y} + \int{\frac{1}{1 - y} d y} - {\color{red}{y}}$$

$$$u=1 - y$$$

$$$du=\left(1 - y\right)^{\prime }dy = - dy$$$ (步骤见»),并有$$$dy = - du$$$

积分变为

$$- y - \int{y d y} - \int{y^{2} d y} + {\color{red}{\int{\frac{1}{1 - y} d y}}} = - y - \int{y d y} - \int{y^{2} d y} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$

$$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- y - \int{y d y} - \int{y^{2} d y} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = - y - \int{y d y} - \int{y^{2} d y} + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- y - \int{y d y} - \int{y^{2} d y} - {\color{red}{\int{\frac{1}{u} d u}}} = - y - \int{y d y} - \int{y^{2} d y} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=1 - y$$$:

$$- y - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{y d y} - \int{y^{2} d y} = - y - \ln{\left(\left|{{\color{red}{\left(1 - y\right)}}}\right| \right)} - \int{y d y} - \int{y^{2} d y}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$- y - \ln{\left(\left|{y - 1}\right| \right)} - \int{y^{2} d y} - {\color{red}{\int{y d y}}}=- y - \ln{\left(\left|{y - 1}\right| \right)} - \int{y^{2} d y} - {\color{red}{\frac{y^{1 + 1}}{1 + 1}}}=- y - \ln{\left(\left|{y - 1}\right| \right)} - \int{y^{2} d y} - {\color{red}{\left(\frac{y^{2}}{2}\right)}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$- \frac{y^{2}}{2} - y - \ln{\left(\left|{y - 1}\right| \right)} - {\color{red}{\int{y^{2} d y}}}=- \frac{y^{2}}{2} - y - \ln{\left(\left|{y - 1}\right| \right)} - {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- \frac{y^{2}}{2} - y - \ln{\left(\left|{y - 1}\right| \right)} - {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

因此,

$$\int{\frac{y^{3}}{1 - y} d y} = - \frac{y^{3}}{3} - \frac{y^{2}}{2} - y - \ln{\left(\left|{y - 1}\right| \right)}$$

加上积分常数:

$$\int{\frac{y^{3}}{1 - y} d y} = - \frac{y^{3}}{3} - \frac{y^{2}}{2} - y - \ln{\left(\left|{y - 1}\right| \right)}+C$$

答案

$$$\int \frac{y^{3}}{1 - y}\, dy = \left(- \frac{y^{3}}{3} - \frac{y^{2}}{2} - y - \ln\left(\left|{y - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly