$$$\frac{x - 5}{3 x - 2}$$$ 的积分
您的输入
求$$$\int \frac{x - 5}{3 x - 2}\, dx$$$。
解答
将被积函数的分子改写为 $$$x - 5=\frac{1}{3}\left(3 x - 2\right)- \frac{13}{3}$$$,并将分式拆分:
$${\color{red}{\int{\frac{x - 5}{3 x - 2} d x}}} = {\color{red}{\int{\left(\frac{1}{3} - \frac{13}{3 \left(3 x - 2\right)}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(\frac{1}{3} - \frac{13}{3 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{3} d x} - \int{\frac{13}{3 \left(3 x - 2\right)} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=\frac{1}{3}$$$:
$$- \int{\frac{13}{3 \left(3 x - 2\right)} d x} + {\color{red}{\int{\frac{1}{3} d x}}} = - \int{\frac{13}{3 \left(3 x - 2\right)} d x} + {\color{red}{\left(\frac{x}{3}\right)}}$$
对 $$$c=\frac{13}{3}$$$ 和 $$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{x}{3} - {\color{red}{\int{\frac{13}{3 \left(3 x - 2\right)} d x}}} = \frac{x}{3} - {\color{red}{\left(\frac{13 \int{\frac{1}{3 x - 2} d x}}{3}\right)}}$$
设$$$u=3 x - 2$$$。
则$$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$。
因此,
$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{3} = \frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 u} d u}}}}{3}$$
对 $$$c=\frac{1}{3}$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 u} d u}}}}{3} = \frac{x}{3} - \frac{13 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{3}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{u} d u}}}}{9} = \frac{x}{3} - \frac{13 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9}$$
回忆一下 $$$u=3 x - 2$$$:
$$\frac{x}{3} - \frac{13 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9} = \frac{x}{3} - \frac{13 \ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{9}$$
因此,
$$\int{\frac{x - 5}{3 x - 2} d x} = \frac{x}{3} - \frac{13 \ln{\left(\left|{3 x - 2}\right| \right)}}{9}$$
加上积分常数:
$$\int{\frac{x - 5}{3 x - 2} d x} = \frac{x}{3} - \frac{13 \ln{\left(\left|{3 x - 2}\right| \right)}}{9}+C$$
答案
$$$\int \frac{x - 5}{3 x - 2}\, dx = \left(\frac{x}{3} - \frac{13 \ln\left(\left|{3 x - 2}\right|\right)}{9}\right) + C$$$A