$$$\frac{x - 5}{3 x - 2}$$$ 的积分

该计算器将求出$$$\frac{x - 5}{3 x - 2}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{x - 5}{3 x - 2}\, dx$$$

解答

将被积函数的分子改写为 $$$x - 5=\frac{1}{3}\left(3 x - 2\right)- \frac{13}{3}$$$,并将分式拆分:

$${\color{red}{\int{\frac{x - 5}{3 x - 2} d x}}} = {\color{red}{\int{\left(\frac{1}{3} - \frac{13}{3 \left(3 x - 2\right)}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(\frac{1}{3} - \frac{13}{3 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{3} d x} - \int{\frac{13}{3 \left(3 x - 2\right)} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=\frac{1}{3}$$$

$$- \int{\frac{13}{3 \left(3 x - 2\right)} d x} + {\color{red}{\int{\frac{1}{3} d x}}} = - \int{\frac{13}{3 \left(3 x - 2\right)} d x} + {\color{red}{\left(\frac{x}{3}\right)}}$$

$$$c=\frac{13}{3}$$$$$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x}{3} - {\color{red}{\int{\frac{13}{3 \left(3 x - 2\right)} d x}}} = \frac{x}{3} - {\color{red}{\left(\frac{13 \int{\frac{1}{3 x - 2} d x}}{3}\right)}}$$

$$$u=3 x - 2$$$

$$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$

因此,

$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{3} = \frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 u} d u}}}}{3}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 u} d u}}}}{3} = \frac{x}{3} - \frac{13 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{3}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{u} d u}}}}{9} = \frac{x}{3} - \frac{13 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9}$$

回忆一下 $$$u=3 x - 2$$$:

$$\frac{x}{3} - \frac{13 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9} = \frac{x}{3} - \frac{13 \ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{9}$$

因此,

$$\int{\frac{x - 5}{3 x - 2} d x} = \frac{x}{3} - \frac{13 \ln{\left(\left|{3 x - 2}\right| \right)}}{9}$$

加上积分常数:

$$\int{\frac{x - 5}{3 x - 2} d x} = \frac{x}{3} - \frac{13 \ln{\left(\left|{3 x - 2}\right| \right)}}{9}+C$$

答案

$$$\int \frac{x - 5}{3 x - 2}\, dx = \left(\frac{x}{3} - \frac{13 \ln\left(\left|{3 x - 2}\right|\right)}{9}\right) + C$$$A


Please try a new game Rotatly