$$$5^{x^{2}} x$$$ 的积分
您的输入
求$$$\int 5^{x^{2}} x\, dx$$$。
解答
设$$$u=x^{2}$$$。
则$$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{2}$$$。
积分变为
$${\color{red}{\int{5^{x^{2}} x d x}}} = {\color{red}{\int{\frac{5^{u}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = 5^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{5^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{5^{u} d u}}{2}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:
$$\frac{{\color{red}{\int{5^{u} d u}}}}{2} = \frac{{\color{red}{\frac{5^{u}}{\ln{\left(5 \right)}}}}}{2}$$
回忆一下 $$$u=x^{2}$$$:
$$\frac{5^{{\color{red}{u}}}}{2 \ln{\left(5 \right)}} = \frac{5^{{\color{red}{x^{2}}}}}{2 \ln{\left(5 \right)}}$$
因此,
$$\int{5^{x^{2}} x d x} = \frac{5^{x^{2}}}{2 \ln{\left(5 \right)}}$$
加上积分常数:
$$\int{5^{x^{2}} x d x} = \frac{5^{x^{2}}}{2 \ln{\left(5 \right)}}+C$$
答案
$$$\int 5^{x^{2}} x\, dx = \frac{5^{x^{2}}}{2 \ln\left(5\right)} + C$$$A