$$$1679616 x^{41}$$$ 的积分
您的输入
求$$$\int 1679616 x^{41}\, dx$$$。
解答
对 $$$c=1679616$$$ 和 $$$f{\left(x \right)} = x^{41}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{1679616 x^{41} d x}}} = {\color{red}{\left(1679616 \int{x^{41} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=41$$$:
$$1679616 {\color{red}{\int{x^{41} d x}}}=1679616 {\color{red}{\frac{x^{1 + 41}}{1 + 41}}}=1679616 {\color{red}{\left(\frac{x^{42}}{42}\right)}}$$
因此,
$$\int{1679616 x^{41} d x} = \frac{279936 x^{42}}{7}$$
加上积分常数:
$$\int{1679616 x^{41} d x} = \frac{279936 x^{42}}{7}+C$$
答案
$$$\int 1679616 x^{41}\, dx = \frac{279936 x^{42}}{7} + C$$$A
Please try a new game Rotatly