$$$\frac{\ln\left(x\right)}{x^{2}}$$$ 的积分

该计算器将求出$$$\frac{\ln\left(x\right)}{x^{2}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\ln\left(x\right)}{x^{2}}\, dx$$$

解答

对于积分$$$\int{\frac{\ln{\left(x \right)}}{x^{2}} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=\frac{dx}{x^{2}}$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\frac{1}{x^{2}} d x}=- \frac{1}{x}$$$ (步骤见 »)。

该积分可以改写为

$${\color{red}{\int{\frac{\ln{\left(x \right)}}{x^{2}} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \left(- \frac{1}{x}\right)-\int{\left(- \frac{1}{x}\right) \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{1}{x^{2}}\right)d x} - \frac{\ln{\left(x \right)}}{x}\right)}}$$

$$$c=-1$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- {\color{red}{\int{\left(- \frac{1}{x^{2}}\right)d x}}} - \frac{\ln{\left(x \right)}}{x} = - {\color{red}{\left(- \int{\frac{1}{x^{2}} d x}\right)}} - \frac{\ln{\left(x \right)}}{x}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$

$${\color{red}{\int{\frac{1}{x^{2}} d x}}} - \frac{\ln{\left(x \right)}}{x}={\color{red}{\int{x^{-2} d x}}} - \frac{\ln{\left(x \right)}}{x}={\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}} - \frac{\ln{\left(x \right)}}{x}={\color{red}{\left(- x^{-1}\right)}} - \frac{\ln{\left(x \right)}}{x}={\color{red}{\left(- \frac{1}{x}\right)}} - \frac{\ln{\left(x \right)}}{x}$$

因此,

$$\int{\frac{\ln{\left(x \right)}}{x^{2}} d x} = - \frac{\ln{\left(x \right)}}{x} - \frac{1}{x}$$

化简:

$$\int{\frac{\ln{\left(x \right)}}{x^{2}} d x} = \frac{- \ln{\left(x \right)} - 1}{x}$$

加上积分常数:

$$\int{\frac{\ln{\left(x \right)}}{x^{2}} d x} = \frac{- \ln{\left(x \right)} - 1}{x}+C$$

答案

$$$\int \frac{\ln\left(x\right)}{x^{2}}\, dx = \frac{- \ln\left(x\right) - 1}{x} + C$$$A


Please try a new game Rotatly