$$$- x + \left(e^{x} - 1\right) e^{- x}$$$ 的积分
您的输入
求$$$\int \left(- x + \left(e^{x} - 1\right) e^{- x}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\left(e^{x} - 1\right) e^{- x} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\int{x d x}}}=\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Expand the expression:
$$- \frac{x^{2}}{2} + {\color{red}{\int{\left(e^{x} - 1\right) e^{- x} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\int{\left(1 - e^{- x}\right)d x}}}$$
逐项积分:
$$- \frac{x^{2}}{2} + {\color{red}{\int{\left(1 - e^{- x}\right)d x}}} = - \frac{x^{2}}{2} + {\color{red}{\left(\int{1 d x} - \int{e^{- x} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$- \frac{x^{2}}{2} - \int{e^{- x} d x} + {\color{red}{\int{1 d x}}} = - \frac{x^{2}}{2} - \int{e^{- x} d x} + {\color{red}{x}}$$
设$$$u=- x$$$。
则$$$du=\left(- x\right)^{\prime }dx = - dx$$$ (步骤见»),并有$$$dx = - du$$$。
所以,
$$- \frac{x^{2}}{2} + x - {\color{red}{\int{e^{- x} d x}}} = - \frac{x^{2}}{2} + x - {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = e^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- \frac{x^{2}}{2} + x - {\color{red}{\int{\left(- e^{u}\right)d u}}} = - \frac{x^{2}}{2} + x - {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{x^{2}}{2} + x + {\color{red}{\int{e^{u} d u}}} = - \frac{x^{2}}{2} + x + {\color{red}{e^{u}}}$$
回忆一下 $$$u=- x$$$:
$$- \frac{x^{2}}{2} + x + e^{{\color{red}{u}}} = - \frac{x^{2}}{2} + x + e^{{\color{red}{\left(- x\right)}}}$$
因此,
$$\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x} = - \frac{x^{2}}{2} + x + e^{- x}$$
加上积分常数:
$$\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x} = - \frac{x^{2}}{2} + x + e^{- x}+C$$
答案
$$$\int \left(- x + \left(e^{x} - 1\right) e^{- x}\right)\, dx = \left(- \frac{x^{2}}{2} + x + e^{- x}\right) + C$$$A