$$$x \left(2 x^{2} - 3\right) e^{3}$$$ 的积分

该计算器将求出$$$x \left(2 x^{2} - 3\right) e^{3}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int x \left(2 x^{2} - 3\right) e^{3}\, dx$$$

解答

$$$u=2 x^{2} - 3$$$

$$$du=\left(2 x^{2} - 3\right)^{\prime }dx = 4 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{4}$$$

因此,

$${\color{red}{\int{x \left(2 x^{2} - 3\right) e^{3} d x}}} = {\color{red}{\int{\frac{u e^{3}}{4} d u}}}$$

$$$c=\frac{e^{3}}{4}$$$$$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{u e^{3}}{4} d u}}} = {\color{red}{\left(\frac{e^{3} \int{u d u}}{4}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\frac{e^{3} {\color{red}{\int{u d u}}}}{4}=\frac{e^{3} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{e^{3} {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$

回忆一下 $$$u=2 x^{2} - 3$$$:

$$\frac{e^{3} {\color{red}{u}}^{2}}{8} = \frac{e^{3} {\color{red}{\left(2 x^{2} - 3\right)}}^{2}}{8}$$

因此,

$$\int{x \left(2 x^{2} - 3\right) e^{3} d x} = \frac{\left(2 x^{2} - 3\right)^{2} e^{3}}{8}$$

加上积分常数:

$$\int{x \left(2 x^{2} - 3\right) e^{3} d x} = \frac{\left(2 x^{2} - 3\right)^{2} e^{3}}{8}+C$$

答案

$$$\int x \left(2 x^{2} - 3\right) e^{3}\, dx = \frac{\left(2 x^{2} - 3\right)^{2} e^{3}}{8} + C$$$A


Please try a new game Rotatly