$$$\sin{\left(x \right)} + e$$$ 的积分
您的输入
求$$$\int \left(\sin{\left(x \right)} + e\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\sin{\left(x \right)} + e\right)d x}}} = {\color{red}{\left(\int{e d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=e$$$:
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{e d x}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{e x}}$$
正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$e x + {\color{red}{\int{\sin{\left(x \right)} d x}}} = e x + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
因此,
$$\int{\left(\sin{\left(x \right)} + e\right)d x} = e x - \cos{\left(x \right)}$$
加上积分常数:
$$\int{\left(\sin{\left(x \right)} + e\right)d x} = e x - \cos{\left(x \right)}+C$$
答案
$$$\int \left(\sin{\left(x \right)} + e\right)\, dx = \left(e x - \cos{\left(x \right)}\right) + C$$$A