$$$\frac{d}{t^{5}}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int \frac{d}{t^{5}}\, dt$$$。
解答
对 $$$c=d$$$ 和 $$$f{\left(t \right)} = \frac{1}{t^{5}}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$${\color{red}{\int{\frac{d}{t^{5}} d t}}} = {\color{red}{d \int{\frac{1}{t^{5}} d t}}}$$
应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-5$$$:
$$d {\color{red}{\int{\frac{1}{t^{5}} d t}}}=d {\color{red}{\int{t^{-5} d t}}}=d {\color{red}{\frac{t^{-5 + 1}}{-5 + 1}}}=d {\color{red}{\left(- \frac{t^{-4}}{4}\right)}}=d {\color{red}{\left(- \frac{1}{4 t^{4}}\right)}}$$
因此,
$$\int{\frac{d}{t^{5}} d t} = - \frac{d}{4 t^{4}}$$
加上积分常数:
$$\int{\frac{d}{t^{5}} d t} = - \frac{d}{4 t^{4}}+C$$
答案
$$$\int \frac{d}{t^{5}}\, dt = - \frac{d}{4 t^{4}} + C$$$A
Please try a new game Rotatly