$$$\frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}$$$ 的积分

该计算器将求出$$$\frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}\, dx$$$

解答

提出一个余弦,并使用公式 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$(令 $$$\alpha=x$$$)将其余部分用正弦表示:

$${\color{red}{\int{\frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}} = {\color{red}{\int{\frac{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$

所以,

$${\color{red}{\int{\frac{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}} = {\color{red}{\int{\frac{1 - u^{2}}{\sqrt{u}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{1 - u^{2}}{\sqrt{u}} d u}}} = {\color{red}{\int{\left(- u^{\frac{3}{2}} + \frac{1}{\sqrt{u}}\right)d u}}}$$

逐项积分:

$${\color{red}{\int{\left(- u^{\frac{3}{2}} + \frac{1}{\sqrt{u}}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{\sqrt{u}} d u} - \int{u^{\frac{3}{2}} d u}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$

$$- \int{u^{\frac{3}{2}} d u} + {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=- \int{u^{\frac{3}{2}} d u} + {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=- \int{u^{\frac{3}{2}} d u} + {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=- \int{u^{\frac{3}{2}} d u} + {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=- \int{u^{\frac{3}{2}} d u} + {\color{red}{\left(2 \sqrt{u}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{3}{2}$$$

$$2 \sqrt{u} - {\color{red}{\int{u^{\frac{3}{2}} d u}}}=2 \sqrt{u} - {\color{red}{\frac{u^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}=2 \sqrt{u} - {\color{red}{\left(\frac{2 u^{\frac{5}{2}}}{5}\right)}}$$

回忆一下 $$$u=\sin{\left(x \right)}$$$:

$$2 \sqrt{{\color{red}{u}}} - \frac{2 {\color{red}{u}}^{\frac{5}{2}}}{5} = 2 \sqrt{{\color{red}{\sin{\left(x \right)}}}} - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{\frac{5}{2}}}{5}$$

因此,

$$\int{\frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x} = - \frac{2 \sin^{\frac{5}{2}}{\left(x \right)}}{5} + 2 \sqrt{\sin{\left(x \right)}}$$

化简:

$$\int{\frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x} = \frac{2 \left(5 - \sin^{2}{\left(x \right)}\right) \sqrt{\sin{\left(x \right)}}}{5}$$

加上积分常数:

$$\int{\frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x} = \frac{2 \left(5 - \sin^{2}{\left(x \right)}\right) \sqrt{\sin{\left(x \right)}}}{5}+C$$

答案

$$$\int \frac{\cos^{3}{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}\, dx = \frac{2 \left(5 - \sin^{2}{\left(x \right)}\right) \sqrt{\sin{\left(x \right)}}}{5} + C$$$A


Please try a new game Rotatly