$$$\left(3 x - 4\right)^{5}$$$ 的积分
您的输入
求$$$\int \left(3 x - 4\right)^{5}\, dx$$$。
解答
设$$$u=3 x - 4$$$。
则$$$du=\left(3 x - 4\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$。
因此,
$${\color{red}{\int{\left(3 x - 4\right)^{5} d x}}} = {\color{red}{\int{\frac{u^{5}}{3} d u}}}$$
对 $$$c=\frac{1}{3}$$$ 和 $$$f{\left(u \right)} = u^{5}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{u^{5}}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{5} d u}}{3}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=5$$$:
$$\frac{{\color{red}{\int{u^{5} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 5}}{1 + 5}}}}{3}=\frac{{\color{red}{\left(\frac{u^{6}}{6}\right)}}}{3}$$
回忆一下 $$$u=3 x - 4$$$:
$$\frac{{\color{red}{u}}^{6}}{18} = \frac{{\color{red}{\left(3 x - 4\right)}}^{6}}{18}$$
因此,
$$\int{\left(3 x - 4\right)^{5} d x} = \frac{\left(3 x - 4\right)^{6}}{18}$$
加上积分常数:
$$\int{\left(3 x - 4\right)^{5} d x} = \frac{\left(3 x - 4\right)^{6}}{18}+C$$
答案
$$$\int \left(3 x - 4\right)^{5}\, dx = \frac{\left(3 x - 4\right)^{6}}{18} + C$$$A