$$$\frac{2 x^{3}}{x^{2} - 9}$$$ 的积分
您的输入
求$$$\int \frac{2 x^{3}}{x^{2} - 9}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{x^{3}}{x^{2} - 9}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2 x^{3}}{x^{2} - 9} d x}}} = {\color{red}{\left(2 \int{\frac{x^{3}}{x^{2} - 9} d x}\right)}}$$
由于分子次数不小于分母次数,进行多项式长除法(步骤见»):
$$2 {\color{red}{\int{\frac{x^{3}}{x^{2} - 9} d x}}} = 2 {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}}$$
逐项积分:
$$2 {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}} = 2 {\color{red}{\left(\int{x d x} + \int{\frac{9 x}{x^{2} - 9} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\int{x d x}}}=2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
设$$$u=x^{2} - 9$$$。
则$$$du=\left(x^{2} - 9\right)^{\prime }dx = 2 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{2}$$$。
因此,
$$x^{2} + 2 {\color{red}{\int{\frac{9 x}{x^{2} - 9} d x}}} = x^{2} + 2 {\color{red}{\int{\frac{9}{2 u} d u}}}$$
对 $$$c=\frac{9}{2}$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$x^{2} + 2 {\color{red}{\int{\frac{9}{2 u} d u}}} = x^{2} + 2 {\color{red}{\left(\frac{9 \int{\frac{1}{u} d u}}{2}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x^{2} + 9 {\color{red}{\int{\frac{1}{u} d u}}} = x^{2} + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x^{2} - 9$$$:
$$x^{2} + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x^{2} + 9 \ln{\left(\left|{{\color{red}{\left(x^{2} - 9\right)}}}\right| \right)}$$
因此,
$$\int{\frac{2 x^{3}}{x^{2} - 9} d x} = x^{2} + 9 \ln{\left(\left|{x^{2} - 9}\right| \right)}$$
加上积分常数:
$$\int{\frac{2 x^{3}}{x^{2} - 9} d x} = x^{2} + 9 \ln{\left(\left|{x^{2} - 9}\right| \right)}+C$$
答案
$$$\int \frac{2 x^{3}}{x^{2} - 9}\, dx = \left(x^{2} + 9 \ln\left(\left|{x^{2} - 9}\right|\right)\right) + C$$$A