$$$\frac{2 x^{3} - 2}{x - 2}$$$ 的积分
您的输入
求$$$\int \frac{2 x^{3} - 2}{x - 2}\, dx$$$。
解答
化简被积函数:
$${\color{red}{\int{\frac{2 x^{3} - 2}{x - 2} d x}}} = {\color{red}{\int{\frac{2 \left(x^{3} - 1\right)}{x - 2} d x}}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{x^{3} - 1}{x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2 \left(x^{3} - 1\right)}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{x^{3} - 1}{x - 2} d x}\right)}}$$
由于分子次数不小于分母次数,进行多项式长除法(步骤见»):
$$2 {\color{red}{\int{\frac{x^{3} - 1}{x - 2} d x}}} = 2 {\color{red}{\int{\left(x^{2} + 2 x + 4 + \frac{7}{x - 2}\right)d x}}}$$
逐项积分:
$$2 {\color{red}{\int{\left(x^{2} + 2 x + 4 + \frac{7}{x - 2}\right)d x}}} = 2 {\color{red}{\left(\int{4 d x} + \int{2 x d x} + \int{x^{2} d x} + \int{\frac{7}{x - 2} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=4$$$:
$$2 \int{2 x d x} + 2 \int{x^{2} d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{4 d x}}} = 2 \int{2 x d x} + 2 \int{x^{2} d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(4 x\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{x^{2} d x}}}=8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{2 x d x}}} = \frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(2 \int{x d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\int{x d x}}}=\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
对 $$$c=7$$$ 和 $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 2 {\color{red}{\int{\frac{7}{x - 2} d x}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 2 {\color{red}{\left(7 \int{\frac{1}{x - 2} d x}\right)}}$$
设$$$u=x - 2$$$。
则$$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x - 2$$$:
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
因此,
$$\int{\frac{2 x^{3} - 2}{x - 2} d x} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{x - 2}\right| \right)}$$
加上积分常数:
$$\int{\frac{2 x^{3} - 2}{x - 2} d x} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{x - 2}\right| \right)}+C$$
答案
$$$\int \frac{2 x^{3} - 2}{x - 2}\, dx = \left(\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A