$$$\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}\, dx$$$。
解答
应用降幂公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,并令 $$$\alpha=x$$$:
$${\color{red}{\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(2 - 3 \sin{\left(x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} \cos{\left(2 x \right)} - 3 \sin{\left(x \right)} + 2 \cos{\left(2 x \right)} + 2\right)d x}}}}{2}$$
逐项积分:
$$\frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} \cos{\left(2 x \right)} - 3 \sin{\left(x \right)} + 2 \cos{\left(2 x \right)} + 2\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 d x} - \int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x} - \int{3 \sin{\left(x \right)} d x} + \int{2 \cos{\left(2 x \right)} d x}\right)}}}{2}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=2$$$:
$$- \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\int{3 \sin{\left(x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{2 d x}}}}{2} = - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\int{3 \sin{\left(x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(2 x\right)}}}{2}$$
对 $$$c=3$$$ 和 $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{2} = x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{2}$$
正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = x - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{2 \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{2 \cos{\left(2 x \right)} d x}}}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(2 \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
所以,
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
回忆一下 $$$u=2 x$$$:
$$x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{2} = x + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
使用公式 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$,取 $$$\alpha=x$$$ 和 $$$\beta=2 x$$$,将 $$$\sin\left(x \right)\cos\left(2 x \right)$$$ 重写:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{2}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = - 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{2} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$
逐项积分:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{{\color{red}{\left(- \int{3 \sin{\left(x \right)} d x} + \int{3 \sin{\left(3 x \right)} d x}\right)}}}{4}$$
对 $$$c=3$$$ 和 $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{4}$$
正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{2} - \frac{\int{3 \sin{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$
对 $$$c=3$$$ 和 $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\int{3 \sin{\left(3 x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\left(3 \int{\sin{\left(3 x \right)} d x}\right)}}}{4}$$
设$$$u=3 x$$$。
则$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$。
积分变为
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4}$$
对 $$$c=\frac{1}{3}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{3 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{4}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
回忆一下 $$$u=3 x$$$:
$$x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{4}$$
因此,
$$\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}$$
加上积分常数:
$$\int{\left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)} d x} = x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}+C$$
答案
$$$\int \left(2 - 3 \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}\, dx = \left(x + \frac{\sin{\left(2 x \right)}}{2} + \frac{3 \cos{\left(x \right)}}{4} + \frac{\cos{\left(3 x \right)}}{4}\right) + C$$$A