$$$\frac{1}{3 \left(1 - x^{2}\right)}$$$ 的积分

该计算器将求出$$$\frac{1}{3 \left(1 - x^{2}\right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{3 \left(1 - x^{2}\right)}\, dx$$$

解答

$$$c=\frac{1}{3}$$$$$$f{\left(x \right)} = \frac{1}{1 - x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{1}{3 \left(1 - x^{2}\right)} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{1 - x^{2}} d x}}{3}\right)}}$$

进行部分分式分解(步骤可见»):

$$\frac{{\color{red}{\int{\frac{1}{1 - x^{2}} d x}}}}{3} = \frac{{\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}}{3}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}}{3} = \frac{{\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}}{3}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{x + 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} + \frac{{\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}}}{3} = - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}}{3}$$

$$$u=x + 1$$$

$$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

因此,

$$- \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} + \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{6} = - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6} = - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$

回忆一下 $$$u=x + 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3} = \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{6} - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{3}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{{\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}}}{3} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}}{3}$$

$$$u=x - 1$$$

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

该积分可以改写为

$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{6} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$

回忆一下 $$$u=x - 1$$$:

$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{6} - \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{6}$$

因此,

$$\int{\frac{1}{3 \left(1 - x^{2}\right)} d x} = - \frac{\ln{\left(\left|{x - 1}\right| \right)}}{6} + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{6}$$

化简:

$$\int{\frac{1}{3 \left(1 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}}{6}$$

加上积分常数:

$$\int{\frac{1}{3 \left(1 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}}{6}+C$$

答案

$$$\int \frac{1}{3 \left(1 - x^{2}\right)}\, dx = \frac{- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)}{6} + C$$$A


Please try a new game Rotatly