$$$\left(\frac{x}{2} - 3\right)^{5}$$$ 的积分
您的输入
求$$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx$$$。
解答
设$$$u=\frac{x}{2} - 3$$$。
则$$$du=\left(\frac{x}{2} - 3\right)^{\prime }dx = \frac{dx}{2}$$$ (步骤见»),并有$$$dx = 2 du$$$。
该积分可以改写为
$${\color{red}{\int{\left(\frac{x}{2} - 3\right)^{5} d x}}} = {\color{red}{\int{2 u^{5} d u}}}$$
对 $$$c=2$$$ 和 $$$f{\left(u \right)} = u^{5}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{2 u^{5} d u}}} = {\color{red}{\left(2 \int{u^{5} d u}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=5$$$:
$$2 {\color{red}{\int{u^{5} d u}}}=2 {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=2 {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
回忆一下 $$$u=\frac{x}{2} - 3$$$:
$$\frac{{\color{red}{u}}^{6}}{3} = \frac{{\color{red}{\left(\frac{x}{2} - 3\right)}}^{6}}{3}$$
因此,
$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(\frac{x}{2} - 3\right)^{6}}{3}$$
化简:
$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}$$
加上积分常数:
$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}+C$$
答案
$$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx = \frac{\left(x - 6\right)^{6}}{192} + C$$$A