$$$- \frac{x^{2}}{79} + \frac{76823 x}{79}$$$ 的积分
您的输入
求$$$\int \left(- \frac{x^{2}}{79} + \frac{76823 x}{79}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- \frac{x^{2}}{79} + \frac{76823 x}{79}\right)d x}}} = {\color{red}{\left(\int{\frac{76823 x}{79} d x} - \int{\frac{x^{2}}{79} d x}\right)}}$$
对 $$$c=\frac{1}{79}$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\int{\frac{76823 x}{79} d x} - {\color{red}{\int{\frac{x^{2}}{79} d x}}} = \int{\frac{76823 x}{79} d x} - {\color{red}{\left(\frac{\int{x^{2} d x}}{79}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$\int{\frac{76823 x}{79} d x} - \frac{{\color{red}{\int{x^{2} d x}}}}{79}=\int{\frac{76823 x}{79} d x} - \frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{79}=\int{\frac{76823 x}{79} d x} - \frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{79}$$
对 $$$c=\frac{76823}{79}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{x^{3}}{237} + {\color{red}{\int{\frac{76823 x}{79} d x}}} = - \frac{x^{3}}{237} + {\color{red}{\left(\frac{76823 \int{x d x}}{79}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- \frac{x^{3}}{237} + \frac{76823 {\color{red}{\int{x d x}}}}{79}=- \frac{x^{3}}{237} + \frac{76823 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{79}=- \frac{x^{3}}{237} + \frac{76823 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{79}$$
因此,
$$\int{\left(- \frac{x^{2}}{79} + \frac{76823 x}{79}\right)d x} = - \frac{x^{3}}{237} + \frac{76823 x^{2}}{158}$$
化简:
$$\int{\left(- \frac{x^{2}}{79} + \frac{76823 x}{79}\right)d x} = \frac{x^{2} \left(230469 - 2 x\right)}{474}$$
加上积分常数:
$$\int{\left(- \frac{x^{2}}{79} + \frac{76823 x}{79}\right)d x} = \frac{x^{2} \left(230469 - 2 x\right)}{474}+C$$
答案
$$$\int \left(- \frac{x^{2}}{79} + \frac{76823 x}{79}\right)\, dx = \frac{x^{2} \left(230469 - 2 x\right)}{474} + C$$$A