$$$\frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}$$$ 的积分

该计算器将求出$$$\frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}\, dx$$$

解答

$$$c=\frac{\pi \ln{\left(3 \right)}}{e^{\pi}}$$$$$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{\pi x^{2} \ln{\left(3 \right)}}{e^{\pi}} d x}}} = {\color{red}{\frac{\pi \ln{\left(3 \right)} \int{x^{2} d x}}{e^{\pi}}}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$\frac{\pi \ln{\left(3 \right)} {\color{red}{\int{x^{2} d x}}}}{e^{\pi}}=\frac{\pi \ln{\left(3 \right)} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{e^{\pi}}=\frac{\pi \ln{\left(3 \right)} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{e^{\pi}}$$

因此,

$$\int{\frac{\pi x^{2} \ln{\left(3 \right)}}{e^{\pi}} d x} = \frac{\pi x^{3} \ln{\left(3 \right)}}{3 e^{\pi}}$$

加上积分常数:

$$\int{\frac{\pi x^{2} \ln{\left(3 \right)}}{e^{\pi}} d x} = \frac{\pi x^{3} \ln{\left(3 \right)}}{3 e^{\pi}}+C$$

答案

$$$\int \frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}\, dx = \frac{\pi x^{3} \ln\left(3\right)}{3 e^{\pi}} + C$$$A


Please try a new game Rotatly