$$$- 3 x^{21} \left(x - 4\right)$$$ 的积分
您的输入
求$$$\int \left(- 3 x^{21} \left(x - 4\right)\right)\, dx$$$。
解答
输入已重写为:$$$\int{\left(- 3 x^{21} \left(x - 4\right)\right)d x}=\int{x^{21} \left(12 - 3 x\right) d x}$$$。
化简被积函数:
$${\color{red}{\int{x^{21} \left(12 - 3 x\right) d x}}} = {\color{red}{\int{3 x^{21} \left(4 - x\right) d x}}}$$
对 $$$c=3$$$ 和 $$$f{\left(x \right)} = x^{21} \left(4 - x\right)$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{3 x^{21} \left(4 - x\right) d x}}} = {\color{red}{\left(3 \int{x^{21} \left(4 - x\right) d x}\right)}}$$
Expand the expression:
$$3 {\color{red}{\int{x^{21} \left(4 - x\right) d x}}} = 3 {\color{red}{\int{\left(- x^{22} + 4 x^{21}\right)d x}}}$$
逐项积分:
$$3 {\color{red}{\int{\left(- x^{22} + 4 x^{21}\right)d x}}} = 3 {\color{red}{\left(\int{4 x^{21} d x} - \int{x^{22} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=22$$$:
$$3 \int{4 x^{21} d x} - 3 {\color{red}{\int{x^{22} d x}}}=3 \int{4 x^{21} d x} - 3 {\color{red}{\frac{x^{1 + 22}}{1 + 22}}}=3 \int{4 x^{21} d x} - 3 {\color{red}{\left(\frac{x^{23}}{23}\right)}}$$
对 $$$c=4$$$ 和 $$$f{\left(x \right)} = x^{21}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{3 x^{23}}{23} + 3 {\color{red}{\int{4 x^{21} d x}}} = - \frac{3 x^{23}}{23} + 3 {\color{red}{\left(4 \int{x^{21} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=21$$$:
$$- \frac{3 x^{23}}{23} + 12 {\color{red}{\int{x^{21} d x}}}=- \frac{3 x^{23}}{23} + 12 {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=- \frac{3 x^{23}}{23} + 12 {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$
因此,
$$\int{x^{21} \left(12 - 3 x\right) d x} = - \frac{3 x^{23}}{23} + \frac{6 x^{22}}{11}$$
化简:
$$\int{x^{21} \left(12 - 3 x\right) d x} = \frac{3 x^{22} \left(46 - 11 x\right)}{253}$$
加上积分常数:
$$\int{x^{21} \left(12 - 3 x\right) d x} = \frac{3 x^{22} \left(46 - 11 x\right)}{253}+C$$
答案
$$$\int \left(- 3 x^{21} \left(x - 4\right)\right)\, dx = \frac{3 x^{22} \left(46 - 11 x\right)}{253} + C$$$A