$$$\frac{e^{2 x}}{e^{x} + 1}$$$ 的积分
您的输入
求$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx$$$。
解答
设$$$u=e^{x}$$$。
则$$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (步骤见»),并有$$$e^{x} dx = du$$$。
因此,
$${\color{red}{\int{\frac{e^{2 x}}{e^{x} + 1} d x}}} = {\color{red}{\int{\frac{u}{u + 1} d u}}}$$
改写并拆分该分式:
$${\color{red}{\int{\frac{u}{u + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$
逐项积分:
$${\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$- \int{\frac{1}{u + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u + 1} d u} + {\color{red}{u}}$$
设$$$v=u + 1$$$。
则$$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (步骤见»),并有$$$du = dv$$$。
该积分可以改写为
$$u - {\color{red}{\int{\frac{1}{u + 1} d u}}} = u - {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$u - {\color{red}{\int{\frac{1}{v} d v}}} = u - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
回忆一下 $$$v=u + 1$$$:
$$u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$
回忆一下 $$$u=e^{x}$$$:
$$- \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - \ln{\left(\left|{1 + {\color{red}{e^{x}}}}\right| \right)} + {\color{red}{e^{x}}}$$
因此,
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}$$
加上积分常数:
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}+C$$
答案
$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx = \left(e^{x} - \ln\left(e^{x} + 1\right)\right) + C$$$A