$$$\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}\, dx$$$

解答

$$$c=\frac{d}{f}$$$$$$f{\left(x \right)} = 7 x^{3} - 13 x^{2} - 6$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x}}} = {\color{red}{\frac{d \int{\left(7 x^{3} - 13 x^{2} - 6\right)d x}}{f}}}$$

逐项积分:

$$\frac{d {\color{red}{\int{\left(7 x^{3} - 13 x^{2} - 6\right)d x}}}}{f} = \frac{d {\color{red}{\left(- \int{6 d x} - \int{13 x^{2} d x} + \int{7 x^{3} d x}\right)}}}{f}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=6$$$

$$\frac{d \left(- \int{13 x^{2} d x} + \int{7 x^{3} d x} - {\color{red}{\int{6 d x}}}\right)}{f} = \frac{d \left(- \int{13 x^{2} d x} + \int{7 x^{3} d x} - {\color{red}{\left(6 x\right)}}\right)}{f}$$

$$$c=13$$$$$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{d \left(- 6 x + \int{7 x^{3} d x} - {\color{red}{\int{13 x^{2} d x}}}\right)}{f} = \frac{d \left(- 6 x + \int{7 x^{3} d x} - {\color{red}{\left(13 \int{x^{2} d x}\right)}}\right)}{f}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$\frac{d \left(- 6 x + \int{7 x^{3} d x} - 13 {\color{red}{\int{x^{2} d x}}}\right)}{f}=\frac{d \left(- 6 x + \int{7 x^{3} d x} - 13 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)}{f}=\frac{d \left(- 6 x + \int{7 x^{3} d x} - 13 {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)}{f}$$

$$$c=7$$$$$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + {\color{red}{\int{7 x^{3} d x}}}\right)}{f} = \frac{d \left(- \frac{13 x^{3}}{3} - 6 x + {\color{red}{\left(7 \int{x^{3} d x}\right)}}\right)}{f}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$

$$\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + 7 {\color{red}{\int{x^{3} d x}}}\right)}{f}=\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + 7 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}\right)}{f}=\frac{d \left(- \frac{13 x^{3}}{3} - 6 x + 7 {\color{red}{\left(\frac{x^{4}}{4}\right)}}\right)}{f}$$

因此,

$$\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x} = \frac{d \left(\frac{7 x^{4}}{4} - \frac{13 x^{3}}{3} - 6 x\right)}{f}$$

化简:

$$\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x} = \frac{d x \left(21 x^{3} - 52 x^{2} - 72\right)}{12 f}$$

加上积分常数:

$$\int{\frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f} d x} = \frac{d x \left(21 x^{3} - 52 x^{2} - 72\right)}{12 f}+C$$

答案

$$$\int \frac{d \left(7 x^{3} - 13 x^{2} - 6\right)}{f}\, dx = \frac{d x \left(21 x^{3} - 52 x^{2} - 72\right)}{12 f} + C$$$A


Please try a new game Rotatly