$$$\frac{1 - x^{2}}{1 - x}$$$ 的积分
您的输入
求$$$\int \frac{1 - x^{2}}{1 - x}\, dx$$$。
解答
化简被积函数:
$${\color{red}{\int{\frac{1 - x^{2}}{1 - x} d x}}} = {\color{red}{\int{\left(x + 1\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(x + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{x d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{x d x} + {\color{red}{\int{1 d x}}} = \int{x d x} + {\color{red}{x}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$x + {\color{red}{\int{x d x}}}=x + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=x + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\frac{1 - x^{2}}{1 - x} d x} = \frac{x^{2}}{2} + x$$
化简:
$$\int{\frac{1 - x^{2}}{1 - x} d x} = \frac{x \left(x + 2\right)}{2}$$
加上积分常数:
$$\int{\frac{1 - x^{2}}{1 - x} d x} = \frac{x \left(x + 2\right)}{2}+C$$
答案
$$$\int \frac{1 - x^{2}}{1 - x}\, dx = \frac{x \left(x + 2\right)}{2} + C$$$A