$$$\frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}}$$$ 的积分

该计算器将求出$$$\frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$

解答

Expand the expression:

$${\color{red}{\int{\frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{\sin{\left(x \right)}}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(-1 + \frac{1}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\sin{\left(x \right)}} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$\int{\frac{1}{\sin{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\sin{\left(x \right)}} d x} - {\color{red}{x}}$$

使用二倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 改写正弦:

$$- x + {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$

将分子和分母同时乘以 $$$\sec^2\left(\frac{x}{2} \right)$$$:

$$- x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$

$$$u=\tan{\left(\frac{x}{2} \right)}$$$

$$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (步骤见»),并有$$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$

因此,

$$- x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=\tan{\left(\frac{x}{2} \right)}$$$:

$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}$$

因此,

$$\int{\frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}$$

加上积分常数:

$$\int{\frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}+C$$

答案

$$$\int \frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(- x + \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right)\right) + C$$$A


Please try a new game Rotatly