$$$\cosh{\left(x \right)}$$$ 的二阶导数

该计算器将求出$$$\cosh{\left(x \right)}$$$的二阶导数,并显示步骤。

相关计算器: 导数计算器, 对数求导法计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d^{2}}{dx^{2}} \left(\cosh{\left(x \right)}\right)$$$

解答

求一阶导数 $$$\frac{d}{dx} \left(\cosh{\left(x \right)}\right)$$$

双曲余弦函数的导数为$$$\frac{d}{dx} \left(\cosh{\left(x \right)}\right) = \sinh{\left(x \right)}$$$

$${\color{red}\left(\frac{d}{dx} \left(\cosh{\left(x \right)}\right)\right)} = {\color{red}\left(\sinh{\left(x \right)}\right)}$$

因此,$$$\frac{d}{dx} \left(\cosh{\left(x \right)}\right) = \sinh{\left(x \right)}$$$

接下来,$$$\frac{d^{2}}{dx^{2}} \left(\cosh{\left(x \right)}\right) = \frac{d}{dx} \left(\sinh{\left(x \right)}\right)$$$

双曲正弦函数的导数为 $$$\frac{d}{dx} \left(\sinh{\left(x \right)}\right) = \cosh{\left(x \right)}$$$

$${\color{red}\left(\frac{d}{dx} \left(\sinh{\left(x \right)}\right)\right)} = {\color{red}\left(\cosh{\left(x \right)}\right)}$$

因此,$$$\frac{d}{dx} \left(\sinh{\left(x \right)}\right) = \cosh{\left(x \right)}$$$

因此,$$$\frac{d^{2}}{dx^{2}} \left(\cosh{\left(x \right)}\right) = \cosh{\left(x \right)}$$$

答案

$$$\frac{d^{2}}{dx^{2}} \left(\cosh{\left(x \right)}\right) = \cosh{\left(x \right)}$$$A


Please try a new game Rotatly