$$$15625 + \frac{719413999 i}{1000000000}$$$ 的极坐标形式

该计算器将求出复数$$$15625 + \frac{719413999 i}{1000000000}$$$的极坐标形式,并显示步骤。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$15625 + \frac{719413999 i}{1000000000}$$$的极坐标形式。

解答

该复数的标准形式为 $$$15625 + \frac{719413999 i}{1000000000}$$$

对于复数$$$a + b i$$$,其极坐标形式为$$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$,其中$$$r = \sqrt{a^{2} + b^{2}}$$$$$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$

我们有 $$$a = 15625$$$$$$b = \frac{719413999}{1000000000}$$$

因此,$$$r = \sqrt{15625^{2} + \left(\frac{719413999}{1000000000}\right)^{2}} = \frac{\sqrt{244140625517556501957172001}}{1000000000}$$$

此外,$$$\theta = \operatorname{atan}{\left(\frac{\frac{719413999}{1000000000}}{15625} \right)} = \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}$$$

因此,$$$15625 + \frac{719413999 i}{1000000000} = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right)$$$

答案

$$$15625 + \frac{719413999 i}{1000000000} = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right) = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{\pi}\right)^{\circ} \right)} + i \sin{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{\pi}\right)^{\circ} \right)}\right)$$$A


Please try a new game Rotatly