$$$15625 + \frac{719413999 i}{1000000000}$$$ 的极坐标形式
您的输入
求$$$15625 + \frac{719413999 i}{1000000000}$$$的极坐标形式。
解答
该复数的标准形式为 $$$15625 + \frac{719413999 i}{1000000000}$$$。
对于复数$$$a + b i$$$,其极坐标形式为$$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$,其中$$$r = \sqrt{a^{2} + b^{2}}$$$和$$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$。
我们有 $$$a = 15625$$$ 和 $$$b = \frac{719413999}{1000000000}$$$。
因此,$$$r = \sqrt{15625^{2} + \left(\frac{719413999}{1000000000}\right)^{2}} = \frac{\sqrt{244140625517556501957172001}}{1000000000}$$$。
此外,$$$\theta = \operatorname{atan}{\left(\frac{\frac{719413999}{1000000000}}{15625} \right)} = \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}$$$。
因此,$$$15625 + \frac{719413999 i}{1000000000} = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right)$$$。
答案
$$$15625 + \frac{719413999 i}{1000000000} = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right) = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{\pi}\right)^{\circ} \right)} + i \sin{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{\pi}\right)^{\circ} \right)}\right)$$$A