Bentuk polar dari $$$15625 + \frac{719413999 i}{1000000000}$$$

Kalkulator akan menemukan bentuk polar dari bilangan kompleks $$$15625 + \frac{719413999 i}{1000000000}$$$, dengan menampilkan langkah-langkahnya.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan bentuk polar dari $$$15625 + \frac{719413999 i}{1000000000}$$$.

Solusi

Bentuk standar dari bilangan kompleks tersebut adalah $$$15625 + \frac{719413999 i}{1000000000}$$$.

Untuk suatu bilangan kompleks $$$a + b i$$$, bentuk kutub diberikan oleh $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, di mana $$$r = \sqrt{a^{2} + b^{2}}$$$ dan $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.

Kita peroleh bahwa $$$a = 15625$$$ dan $$$b = \frac{719413999}{1000000000}$$$.

Dengan demikian, $$$r = \sqrt{15625^{2} + \left(\frac{719413999}{1000000000}\right)^{2}} = \frac{\sqrt{244140625517556501957172001}}{1000000000}.$$$

Selain itu, $$$\theta = \operatorname{atan}{\left(\frac{\frac{719413999}{1000000000}}{15625} \right)} = \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}.$$$

Oleh karena itu, $$$15625 + \frac{719413999 i}{1000000000} = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right).$$$

Jawaban

$$$15625 + \frac{719413999 i}{1000000000} = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right) = \frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{\pi}\right)^{\circ} \right)} + i \sin{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{\pi}\right)^{\circ} \right)}\right)$$$A


Please try a new game Rotatly