$$$\sqrt[4]{15625 + \frac{719413999 i}{1000000000}}$$$

此计算器将求出复数 $$$15625 + \frac{719413999 i}{1000000000}$$$ 的所有 $$$n$$$ 次方根($$$n = 4$$$),并显示步骤。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\sqrt[4]{15625 + \frac{719413999 i}{1000000000}}$$$

解答

$$$15625 + \frac{719413999 i}{1000000000}$$$ 的极坐标形式是 $$$\frac{\sqrt{244140625517556501957172001}}{1000000000} \left(\cos{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} \right)}\right)$$$(步骤请参见 极坐标形式计算器)。

根据棣莫弗公式,复数$$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$的所有$$$n$$$次方根由$$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$给出。

我们有$$$r = \frac{\sqrt{244140625517556501957172001}}{1000000000}$$$$$$\theta = \operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}$$$$$$n = 4$$$

  • $$$k = 0$$$: $$$\sqrt[4]{\frac{\sqrt{244140625517556501957172001}}{1000000000}} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 0}{4} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 0}{4} \right)}\right) = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001}}{1000} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}\right) = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} + \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}$$$
  • $$$k = 1$$$: $$$\sqrt[4]{\frac{\sqrt{244140625517556501957172001}}{1000000000}} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 1}{4} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 1}{4} \right)}\right) = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001}}{1000} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} + \frac{\pi}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} + \frac{\pi}{2} \right)}\right) = - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} + \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}$$$
  • $$$k = 2$$$: $$$\sqrt[4]{\frac{\sqrt{244140625517556501957172001}}{1000000000}} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 2}{4} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 2}{4} \right)}\right) = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001}}{1000} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} + \pi \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} + \pi \right)}\right) = - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}$$$
  • $$$k = 3$$$: $$$\sqrt[4]{\frac{\sqrt{244140625517556501957172001}}{1000000000}} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 3}{4} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)} + 2\cdot \pi\cdot 3}{4} \right)}\right) = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001}}{1000} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} + \frac{3 \pi}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} + \frac{3 \pi}{2} \right)}\right) = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}$$$

答案

$$$\sqrt[4]{15625 + \frac{719413999 i}{1000000000}} = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} + \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}\approx 11.180339889720948 + 0.000128692688399 i$$$A

$$$\sqrt[4]{15625 + \frac{719413999 i}{1000000000}} = - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} + \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}\approx -0.000128692688399 + 11.180339889720948 i$$$A

$$$\sqrt[4]{15625 + \frac{719413999 i}{1000000000}} = - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}\approx -11.180339889720948 - 0.000128692688399 i$$$A

$$$\sqrt[4]{15625 + \frac{719413999 i}{1000000000}} = \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} \sin{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000} - \frac{10^{\frac{3}{4}} \sqrt[8]{244140625517556501957172001} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{719413999}{15625000000000} \right)}}{4} \right)}}{1000}\approx 0.000128692688399 - 11.180339889720948 i$$$A


Please try a new game Rotatly