$$$\frac{1}{\tan{\left(x \right)}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{1}{\tan{\left(x \right)}}\, dx$$$.
Çözüm
$$$u=\tan{\left(x \right)}$$$ olsun.
O halde $$$x=\operatorname{atan}{\left(u \right)}$$$ ve $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (adımlar » görülebilir).
Dolayısıyla,
$${\color{red}{\int{\frac{1}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u \left(u^{2} + 1\right)} d u}}}$$
$$$v=u^{2} + 1$$$ olsun.
Böylece $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (adımlar » görülebilir) ve $$$u du = \frac{dv}{2}$$$ elde ederiz.
Dolayısıyla,
$${\color{red}{\int{\frac{1}{u \left(u^{2} + 1\right)} d u}}} = {\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(v \right)} = \frac{1}{v \left(v - 1\right)}$$$ ile uygula:
$${\color{red}{\int{\frac{1}{2 v \left(v - 1\right)} d v}}} = {\color{red}{\left(\frac{\int{\frac{1}{v \left(v - 1\right)} d v}}{2}\right)}}$$
Kısmi kesirlere ayrıştırma yapın (adımlar » görülebilir):
$$\frac{{\color{red}{\int{\frac{1}{v \left(v - 1\right)} d v}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(\frac{1}{v - 1} - \frac{1}{v}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{v} d v} + \int{\frac{1}{v - 1} d v}\right)}}}{2}$$
$$$w=v - 1$$$ olsun.
Böylece $$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (adımlar » görülebilir) ve $$$dv = dw$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$- \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = - \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$
$$$\frac{1}{w}$$$'nin integrali $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:
$$- \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - \frac{\int{\frac{1}{v} d v}}{2} + \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$
Hatırlayın ki $$$w=v - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} - \frac{\int{\frac{1}{v} d v}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} - \frac{\int{\frac{1}{v} d v}}{2}$$
$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Hatırlayın ki $$$v=u^{2} + 1$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$
Hatırlayın ki $$$u=\tan{\left(x \right)}$$$:
$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} + \frac{\ln{\left({\color{red}{u}}^{2} \right)}}{2} = - \frac{\ln{\left(1 + {\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2} + \frac{\ln{\left({\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2}$$
Dolayısıyla,
$$\int{\frac{1}{\tan{\left(x \right)}} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\ln{\left(\tan^{2}{\left(x \right)} \right)}}{2}$$
Sadeleştirin:
$$\int{\frac{1}{\tan{\left(x \right)}} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \ln{\left(\tan{\left(x \right)} \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{1}{\tan{\left(x \right)}} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \ln{\left(\tan{\left(x \right)} \right)}+C$$
Cevap
$$$\int \frac{1}{\tan{\left(x \right)}}\, dx = \left(- \frac{\ln\left(\tan^{2}{\left(x \right)} + 1\right)}{2} + \ln\left(\tan{\left(x \right)}\right)\right) + C$$$A