$$$x$$$ değişkenine göre $$$- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)\, dx$$$.

Trigonometrik fonksiyonlar argümanı radyan cinsinden bekler. Argümanı derece cinsinden girmek için onu pi/180 ile çarpın; örneğin 45°’yi 45*pi/180 olarak yazın, ya da uygun fonksiyonun sonuna ‘d’ eklenmiş sürümünü kullanın; örneğin sin(45°)’i sind(45) olarak yazın.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- 9 i n t \sec{\left(2 \right)}$$$ ve $$$f{\left(x \right)} = x \sin{\left(3 x \right)}$$$ ile uygula:

$${\color{red}{\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x}}} = {\color{red}{\left(- 9 i n t \sec{\left(2 \right)} \int{x \sin{\left(3 x \right)} d x}\right)}}$$

$$$\int{x \sin{\left(3 x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$ (adımlar için bkz. »).

Dolayısıyla,

$$- 9 i n t \sec{\left(2 \right)} {\color{red}{\int{x \sin{\left(3 x \right)} d x}}}=- 9 i n t \sec{\left(2 \right)} {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 1 d x}\right)}}=- 9 i n t \sec{\left(2 \right)} {\color{red}{\left(- \frac{x \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- \frac{1}{3}$$$ ve $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$ ile uygula:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} - {\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} - {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}\right)$$

$$$u=3 x$$$ olsun.

Böylece $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{3}$$$ elde ederiz.

O halde,

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}\right)$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}\right)$$

Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{9}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\sin{\left(u \right)}}}}{9}\right)$$

Hatırlayın ki $$$u=3 x$$$:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left({\color{red}{u}} \right)}}{9}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}\right)$$

Dolayısıyla,

$$\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x} = - 9 i n t \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9}\right) \sec{\left(2 \right)}$$

Sadeleştirin:

$$\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x} = i n t \left(3 x \cos{\left(3 x \right)} - \sin{\left(3 x \right)}\right) \sec{\left(2 \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x} = i n t \left(3 x \cos{\left(3 x \right)} - \sin{\left(3 x \right)}\right) \sec{\left(2 \right)}+C$$

Cevap

$$$\int \left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)\, dx = i n t \left(3 x \cos{\left(3 x \right)} - \sin{\left(3 x \right)}\right) \sec{\left(2 \right)} + C$$$A


Please try a new game Rotatly