Integralen av $$$- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)\, dx$$$.

De trigonometriska funktionerna förväntar sig att argumentet är i radianer. För att ange argumentet i grader, multiplicera det med pi/180, t.ex. skriv 45° som 45*pi/180, eller använd motsvarande funktion med ett 'd' tillagt, t.ex. skriv sin(45°) som sind(45).

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=- 9 i n t \sec{\left(2 \right)}$$$ och $$$f{\left(x \right)} = x \sin{\left(3 x \right)}$$$:

$${\color{red}{\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x}}} = {\color{red}{\left(- 9 i n t \sec{\left(2 \right)} \int{x \sin{\left(3 x \right)} d x}\right)}}$$

För integralen $$$\int{x \sin{\left(3 x \right)} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Låt $$$\operatorname{u}=x$$$ och $$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$.

Då gäller $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$ (stegen kan ses »).

Alltså,

$$- 9 i n t \sec{\left(2 \right)} {\color{red}{\int{x \sin{\left(3 x \right)} d x}}}=- 9 i n t \sec{\left(2 \right)} {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 1 d x}\right)}}=- 9 i n t \sec{\left(2 \right)} {\color{red}{\left(- \frac{x \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=- \frac{1}{3}$$$ och $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} - {\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} - {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}\right)$$

Låt $$$u=3 x$$$ vara.

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{3}$$$.

Alltså,

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}\right)$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{3}$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}\right)$$

Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{9}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\sin{\left(u \right)}}}}{9}\right)$$

Kom ihåg att $$$u=3 x$$$:

$$- 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left({\color{red}{u}} \right)}}{9}\right) = - 9 i n t \sec{\left(2 \right)} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}\right)$$

Alltså,

$$\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x} = - 9 i n t \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9}\right) \sec{\left(2 \right)}$$

Förenkla:

$$\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x} = i n t \left(3 x \cos{\left(3 x \right)} - \sin{\left(3 x \right)}\right) \sec{\left(2 \right)}$$

Lägg till integrationskonstanten:

$$\int{\left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)d x} = i n t \left(3 x \cos{\left(3 x \right)} - \sin{\left(3 x \right)}\right) \sec{\left(2 \right)}+C$$

Svar

$$$\int \left(- 9 i n t x \sin{\left(3 x \right)} \sec{\left(2 \right)}\right)\, dx = i n t \left(3 x \cos{\left(3 x \right)} - \sin{\left(3 x \right)}\right) \sec{\left(2 \right)} + C$$$A


Please try a new game Rotatly