$$$x^{66} \tan{\left(1 \right)} + x^{2}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$x^{66} \tan{\left(1 \right)} + x^{2}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(x^{66} \tan{\left(1 \right)} + x^{2}\right)\, dx$$$.

Trigonometrik fonksiyonlar argümanı radyan cinsinden bekler. Argümanı derece cinsinden girmek için onu pi/180 ile çarpın; örneğin 45°’yi 45*pi/180 olarak yazın, ya da uygun fonksiyonun sonuna ‘d’ eklenmiş sürümünü kullanın; örneğin sin(45°)’i sind(45) olarak yazın.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(x^{66} \tan{\left(1 \right)} + x^{2}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} + \int{x^{66} \tan{\left(1 \right)} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$\int{x^{66} \tan{\left(1 \right)} d x} + {\color{red}{\int{x^{2} d x}}}=\int{x^{66} \tan{\left(1 \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{x^{66} \tan{\left(1 \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\tan{\left(1 \right)}$$$ ve $$$f{\left(x \right)} = x^{66}$$$ ile uygula:

$$\frac{x^{3}}{3} + {\color{red}{\int{x^{66} \tan{\left(1 \right)} d x}}} = \frac{x^{3}}{3} + {\color{red}{\tan{\left(1 \right)} \int{x^{66} d x}}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=66$$$ ile uygulayın:

$$\frac{x^{3}}{3} + \tan{\left(1 \right)} {\color{red}{\int{x^{66} d x}}}=\frac{x^{3}}{3} + \tan{\left(1 \right)} {\color{red}{\frac{x^{1 + 66}}{1 + 66}}}=\frac{x^{3}}{3} + \tan{\left(1 \right)} {\color{red}{\left(\frac{x^{67}}{67}\right)}}$$

Dolayısıyla,

$$\int{\left(x^{66} \tan{\left(1 \right)} + x^{2}\right)d x} = \frac{x^{67} \tan{\left(1 \right)}}{67} + \frac{x^{3}}{3}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(x^{66} \tan{\left(1 \right)} + x^{2}\right)d x} = \frac{x^{67} \tan{\left(1 \right)}}{67} + \frac{x^{3}}{3}+C$$

Cevap

$$$\int \left(x^{66} \tan{\left(1 \right)} + x^{2}\right)\, dx = \left(\frac{x^{67} \tan{\left(1 \right)}}{67} + \frac{x^{3}}{3}\right) + C$$$A


Please try a new game Rotatly