Integral of $$$x^{66} \tan{\left(1 \right)} + x^{2}$$$

The calculator will find the integral/antiderivative of $$$x^{66} \tan{\left(1 \right)} + x^{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(x^{66} \tan{\left(1 \right)} + x^{2}\right)\, dx$$$.

The trigonometric functions expect the argument in radians. To enter the argument in degrees, multiply it by pi/180, e.g. write 45° as 45*pi/180, or use the appropriate function adding 'd', e.g. write sin(45°) as sind(45).

Solution

Integrate term by term:

$${\color{red}{\int{\left(x^{66} \tan{\left(1 \right)} + x^{2}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} + \int{x^{66} \tan{\left(1 \right)} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$\int{x^{66} \tan{\left(1 \right)} d x} + {\color{red}{\int{x^{2} d x}}}=\int{x^{66} \tan{\left(1 \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{x^{66} \tan{\left(1 \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\tan{\left(1 \right)}$$$ and $$$f{\left(x \right)} = x^{66}$$$:

$$\frac{x^{3}}{3} + {\color{red}{\int{x^{66} \tan{\left(1 \right)} d x}}} = \frac{x^{3}}{3} + {\color{red}{\tan{\left(1 \right)} \int{x^{66} d x}}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=66$$$:

$$\frac{x^{3}}{3} + \tan{\left(1 \right)} {\color{red}{\int{x^{66} d x}}}=\frac{x^{3}}{3} + \tan{\left(1 \right)} {\color{red}{\frac{x^{1 + 66}}{1 + 66}}}=\frac{x^{3}}{3} + \tan{\left(1 \right)} {\color{red}{\left(\frac{x^{67}}{67}\right)}}$$

Therefore,

$$\int{\left(x^{66} \tan{\left(1 \right)} + x^{2}\right)d x} = \frac{x^{67} \tan{\left(1 \right)}}{67} + \frac{x^{3}}{3}$$

Add the constant of integration:

$$\int{\left(x^{66} \tan{\left(1 \right)} + x^{2}\right)d x} = \frac{x^{67} \tan{\left(1 \right)}}{67} + \frac{x^{3}}{3}+C$$

Answer

$$$\int \left(x^{66} \tan{\left(1 \right)} + x^{2}\right)\, dx = \left(\frac{x^{67} \tan{\left(1 \right)}}{67} + \frac{x^{3}}{3}\right) + C$$$A


Please try a new game Rotatly