$$$t^{2} e^{5 t}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$t^{2} e^{5 t}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int t^{2} e^{5 t}\, dt$$$.

Çözüm

$$$\int{t^{2} e^{5 t} d t}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=t^{2}$$$ ve $$$\operatorname{dv}=e^{5 t} dt$$$ olsun.

O halde $$$\operatorname{du}=\left(t^{2}\right)^{\prime }dt=2 t dt$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{5 t} d t}=\frac{e^{5 t}}{5}$$$ (adımlar için bkz. »).

Dolayısıyla,

$${\color{red}{\int{t^{2} e^{5 t} d t}}}={\color{red}{\left(t^{2} \cdot \frac{e^{5 t}}{5}-\int{\frac{e^{5 t}}{5} \cdot 2 t d t}\right)}}={\color{red}{\left(\frac{t^{2} e^{5 t}}{5} - \int{\frac{2 t e^{5 t}}{5} d t}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{2}{5}$$$ ve $$$f{\left(t \right)} = t e^{5 t}$$$ ile uygula:

$$\frac{t^{2} e^{5 t}}{5} - {\color{red}{\int{\frac{2 t e^{5 t}}{5} d t}}} = \frac{t^{2} e^{5 t}}{5} - {\color{red}{\left(\frac{2 \int{t e^{5 t} d t}}{5}\right)}}$$

$$$\int{t e^{5 t} d t}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=t$$$ ve $$$\operatorname{dv}=e^{5 t} dt$$$ olsun.

O halde $$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{5 t} d t}=\frac{e^{5 t}}{5}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$$\frac{t^{2} e^{5 t}}{5} - \frac{2 {\color{red}{\int{t e^{5 t} d t}}}}{5}=\frac{t^{2} e^{5 t}}{5} - \frac{2 {\color{red}{\left(t \cdot \frac{e^{5 t}}{5}-\int{\frac{e^{5 t}}{5} \cdot 1 d t}\right)}}}{5}=\frac{t^{2} e^{5 t}}{5} - \frac{2 {\color{red}{\left(\frac{t e^{5 t}}{5} - \int{\frac{e^{5 t}}{5} d t}\right)}}}{5}$$

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{1}{5}$$$ ve $$$f{\left(t \right)} = e^{5 t}$$$ ile uygula:

$$\frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\int{\frac{e^{5 t}}{5} d t}}}}{5} = \frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\left(\frac{\int{e^{5 t} d t}}{5}\right)}}}{5}$$

$$$u=5 t$$$ olsun.

Böylece $$$du=\left(5 t\right)^{\prime }dt = 5 dt$$$ (adımlar » görülebilir) ve $$$dt = \frac{du}{5}$$$ elde ederiz.

Dolayısıyla,

$$\frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\int{e^{5 t} d t}}}}{25} = \frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\int{\frac{e^{u}}{5} d u}}}}{25}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{5}$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:

$$\frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\int{\frac{e^{u}}{5} d u}}}}{25} = \frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\left(\frac{\int{e^{u} d u}}{5}\right)}}}{25}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{\int{e^{u} d u}}}}{125} = \frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 {\color{red}{e^{u}}}}{125}$$

Hatırlayın ki $$$u=5 t$$$:

$$\frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 e^{{\color{red}{u}}}}{125} = \frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 e^{{\color{red}{\left(5 t\right)}}}}{125}$$

Dolayısıyla,

$$\int{t^{2} e^{5 t} d t} = \frac{t^{2} e^{5 t}}{5} - \frac{2 t e^{5 t}}{25} + \frac{2 e^{5 t}}{125}$$

Sadeleştirin:

$$\int{t^{2} e^{5 t} d t} = \frac{\left(25 t^{2} - 10 t + 2\right) e^{5 t}}{125}$$

İntegrasyon sabitini ekleyin:

$$\int{t^{2} e^{5 t} d t} = \frac{\left(25 t^{2} - 10 t + 2\right) e^{5 t}}{125}+C$$

Cevap

$$$\int t^{2} e^{5 t}\, dt = \frac{\left(25 t^{2} - 10 t + 2\right) e^{5 t}}{125} + C$$$A


Please try a new game Rotatly