Belirli ve Uygunsuz İntegral Hesaplayıcı

Belirli ve uygunsuz integralleri adım adım hesaplayın

Hesaplayıcı, uygunsuz olanlar da dahil olmak üzere belirli (yani sınırları olan) integrali adımları göstererek hesaplamaya çalışacaktır.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{a f g n^{3} t^{2} v y e^{2}}^{t}\left( e^{- x^{2}} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{e^{- x^{2}} d x}=\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=t\right)}=\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2}$$$

$$$\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=a f g n^{3} t^{2} v y e^{2}\right)}=\frac{\sqrt{\pi} \operatorname{erf}{\left(a f g n^{3} t^{2} v y e^{2} \right)}}{2}$$$

$$$\int_{a f g n^{3} t^{2} v y e^{2}}^{t}\left( e^{- x^{2}} \right)dx=\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=t\right)}-\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=a f g n^{3} t^{2} v y e^{2}\right)}=\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} - \frac{\sqrt{\pi} \operatorname{erf}{\left(a f g n^{3} t^{2} v y e^{2} \right)}}{2}$$$

Answer: $$$\int_{a f g n^{3} t^{2} v y e^{2}}^{t}\left( e^{- x^{2}} \right)dx=\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} - \frac{\sqrt{\pi} \operatorname{erf}{\left(a f g n^{3} t^{2} v y e^{2} \right)}}{2}$$$


Please try a new game Rotatly