Belirli ve Uygunsuz İntegral Hesaplayıcı

Belirli ve uygunsuz integralleri adım adım hesaplayın

Hesaplayıcı, uygunsuz olanlar da dahil olmak üzere belirli (yani sınırları olan) integrali adımları göstererek hesaplamaya çalışacaktır.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{3}^{c}\left( c + f^{2} x^{2} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(c + f^{2} x^{2}\right)d x}=x \left(c + \frac{f^{2} x^{2}}{3}\right)$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(x \left(c + \frac{f^{2} x^{2}}{3}\right)\right)|_{\left(x=c\right)}=c \left(\frac{c^{2} f^{2}}{3} + c\right)$$$

$$$\left(x \left(c + \frac{f^{2} x^{2}}{3}\right)\right)|_{\left(x=3\right)}=3 c + 9 f^{2}$$$

$$$\int_{3}^{c}\left( c + f^{2} x^{2} \right)dx=\left(x \left(c + \frac{f^{2} x^{2}}{3}\right)\right)|_{\left(x=c\right)}-\left(x \left(c + \frac{f^{2} x^{2}}{3}\right)\right)|_{\left(x=3\right)}=c \left(\frac{c^{2} f^{2}}{3} + c\right) - 3 c - 9 f^{2}$$$

Answer: $$$\int_{3}^{c}\left( c + f^{2} x^{2} \right)dx=c \left(\frac{c^{2} f^{2}}{3} + c\right) - 3 c - 9 f^{2}$$$


Please try a new game Rotatly