Konik kesiti belirleyin $$$5050000000 = \frac{139656 x \left(1655 - \frac{x}{2}\right)}{5}$$$
İlgili hesaplayıcılar: Parabol Hesaplayıcı, Daire Hesaplayıcı, Elips Hesaplayıcı, Hiperbol Hesaplayıcı
Girdiniz
Konik kesit $$$5050000000 = \frac{139656 x \left(1655 - \frac{x}{2}\right)}{5}$$$ için türünü belirleyin ve özelliklerini bulun.
Çözüm
Bir konik kesitin genel denklemi $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$ şeklindedir.
Bizim durumumuzda, $$$A = \frac{69828}{5}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -46226136$$$, $$$E = 0$$$, $$$F = 5050000000$$$.
Konik kesitin diskriminantı $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$'dir.
Ardından, $$$B^{2} - 4 A C = 0$$$.
$$$\Delta = 0$$$ olduğundan, bu dejenere bir konik kesittir.
$$$B^{2} - 4 A C = 0$$$ olduğundan, denklem iki paralel doğruyu temsil eder.
Cevap
$$$5050000000 = \frac{139656 x \left(1655 - \frac{x}{2}\right)}{5}$$$A, $$$x = 1655 - \frac{5 \sqrt{54783510441}}{759}$$$, $$$x = \frac{5 \left(\sqrt{54783510441} + 251229\right)}{759}$$$A doğrularından oluşan bir doğru çifti gösterir.
Genel biçim: $$$\frac{69828 x^{2}}{5} - 46226136 x + 5050000000 = 0$$$A.
Çarpanlarına ayrılmış biçim: $$$\left(759 x - 1256145 - 5 \sqrt{54783510441}\right) \left(759 x - 1256145 + 5 \sqrt{54783510441}\right) = 0.$$$A
Grafik: bkz. grafik hesap makinesi.