Konik kesiti belirleyin $$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$

Hesap makinesi, adımları göstererek $$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$ konik kesitinin türünü belirleyecek ve özelliklerini bulacaktır.

İlgili hesaplayıcılar: Parabol Hesaplayıcı, Daire Hesaplayıcı, Elips Hesaplayıcı, Hiperbol Hesaplayıcı

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Konik kesit $$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$ için türünü belirleyin ve özelliklerini bulun.

Trigonometrik fonksiyonlar argümanı radyan cinsinden bekler. Argümanı derece cinsinden girmek için onu pi/180 ile çarpın; örneğin 45°’yi 45*pi/180 olarak yazın, ya da uygun fonksiyonun sonuna ‘d’ eklenmiş sürümünü kullanın; örneğin sin(45°)’i sind(45) olarak yazın.

Çözüm

Bir konik kesitin genel denklemi $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$ şeklindedir.

Bizim durumumuzda, $$$A = 2 \sin{\left(8 \right)}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -1$$$.

Konik kesitin diskriminantı $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$'dir.

Ardından, $$$B^{2} - 4 A C = 0$$$.

$$$\Delta = 0$$$ olduğundan, bu dejenere bir konik kesittir.

$$$B^{2} - 4 A C = 0$$$ olduğundan, denklem iki paralel doğruyu temsil eder.

Cevap

$$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$A, $$$x = - \frac{\sqrt{2}}{2 \sqrt{\sin{\left(8 \right)}}}$$$, $$$x = \frac{\sqrt{2}}{2 \sqrt{\sin{\left(8 \right)}}}$$$A doğrularından oluşan bir doğru çifti gösterir.

Genel biçim: $$$2 x^{2} \sin{\left(8 \right)} - 1 = 0$$$A.

Çarpanlarına ayrılmış biçim: $$$\left(2 x \sqrt{\sin{\left(8 \right)}} - \sqrt{2}\right) \left(2 x \sqrt{\sin{\left(8 \right)}} + \sqrt{2}\right) = 0$$$A.

Grafik: bkz. grafik hesap makinesi.


Please try a new game Rotatly