Konik kesiti belirleyin $$$\frac{x^{2}}{2} - 12 = 0$$$
İlgili hesaplayıcılar: Parabol Hesaplayıcı, Daire Hesaplayıcı, Elips Hesaplayıcı, Hiperbol Hesaplayıcı
Girdiniz
Konik kesit $$$\frac{x^{2}}{2} - 12 = 0$$$ için türünü belirleyin ve özelliklerini bulun.
Çözüm
Bir konik kesitin genel denklemi $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$ şeklindedir.
Bizim durumumuzda, $$$A = \frac{1}{2}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -12$$$.
Konik kesitin diskriminantı $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$'dir.
Ardından, $$$B^{2} - 4 A C = 0$$$.
$$$\Delta = 0$$$ olduğundan, bu dejenere bir konik kesittir.
$$$B^{2} - 4 A C = 0$$$ olduğundan, denklem iki paralel doğruyu temsil eder.
Cevap
$$$\frac{x^{2}}{2} - 12 = 0$$$A, $$$x = - 2 \sqrt{6}$$$, $$$x = 2 \sqrt{6}$$$A doğrularından oluşan bir doğru çifti gösterir.
Genel biçim: $$$\frac{x^{2}}{2} - 12 = 0$$$A.
Çarpanlarına ayrılmış biçim: $$$\left(x - 2 \sqrt{6}\right) \left(x + 2 \sqrt{6}\right) = 0$$$A.
Grafik: bkz. grafik hesap makinesi.