Integralen av $$$- a^{2} + \frac{1}{x^{2}}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$- a^{2} + \frac{1}{x^{2}}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- a^{2} + \frac{1}{x^{2}}\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(- a^{2} + \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{a^{2} d x} + \int{\frac{1}{x^{2}} d x}\right)}}$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=-2$$$:

$$- \int{a^{2} d x} + {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- \int{a^{2} d x} + {\color{red}{\int{x^{-2} d x}}}=- \int{a^{2} d x} + {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- \int{a^{2} d x} + {\color{red}{\left(- x^{-1}\right)}}=- \int{a^{2} d x} + {\color{red}{\left(- \frac{1}{x}\right)}}$$

Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=a^{2}$$$:

$$- {\color{red}{\int{a^{2} d x}}} - \frac{1}{x} = - {\color{red}{a^{2} x}} - \frac{1}{x}$$

Alltså,

$$\int{\left(- a^{2} + \frac{1}{x^{2}}\right)d x} = - a^{2} x - \frac{1}{x}$$

Lägg till integrationskonstanten:

$$\int{\left(- a^{2} + \frac{1}{x^{2}}\right)d x} = - a^{2} x - \frac{1}{x}+C$$

Svar

$$$\int \left(- a^{2} + \frac{1}{x^{2}}\right)\, dx = \left(- a^{2} x - \frac{1}{x}\right) + C$$$A


Please try a new game Rotatly