Integralen av $$$\tan{\left(y \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \tan{\left(y \right)}\, dy$$$.
Lösning
Skriv om tangenten som $$$\tan\left(y\right)=\frac{\sin\left(y\right)}{\cos\left(y\right)}$$$:
$${\color{red}{\int{\tan{\left(y \right)} d y}}} = {\color{red}{\int{\frac{\sin{\left(y \right)}}{\cos{\left(y \right)}} d y}}}$$
Låt $$$u=\cos{\left(y \right)}$$$ vara.
Då $$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (stegen kan ses »), och vi har att $$$\sin{\left(y \right)} dy = - du$$$.
Integralen blir
$${\color{red}{\int{\frac{\sin{\left(y \right)}}{\cos{\left(y \right)}} d y}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Kom ihåg att $$$u=\cos{\left(y \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\cos{\left(y \right)}}}}\right| \right)}$$
Alltså,
$$\int{\tan{\left(y \right)} d y} = - \ln{\left(\left|{\cos{\left(y \right)}}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\tan{\left(y \right)} d y} = - \ln{\left(\left|{\cos{\left(y \right)}}\right| \right)}+C$$
Svar
$$$\int \tan{\left(y \right)}\, dy = - \ln\left(\left|{\cos{\left(y \right)}}\right|\right) + C$$$A