Integralen av $$$- \frac{\theta \cos{\left(2 x \right)}}{\cos{\left(2 \right)} \cos{\left(x \right)}} - \cos{\left(\theta \right)}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$- \frac{\theta \cos{\left(2 x \right)}}{\cos{\left(2 \right)} \cos{\left(x \right)}} - \cos{\left(\theta \right)}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- \frac{\theta \cos{\left(2 x \right)}}{\cos{\left(2 \right)} \cos{\left(x \right)}} - \cos{\left(\theta \right)}\right)\, dx$$$.

De trigonometriska funktionerna förväntar sig att argumentet är i radianer. För att ange argumentet i grader, multiplicera det med pi/180, t.ex. skriv 45° som 45*pi/180, eller använd motsvarande funktion med ett 'd' tillagt, t.ex. skriv sin(45°) som sind(45).

Please try a new game Rotatly