Integral of $$$- \frac{\theta \cos{\left(2 x \right)}}{\cos{\left(2 \right)} \cos{\left(x \right)}} - \cos{\left(\theta \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{\theta \cos{\left(2 x \right)}}{\cos{\left(2 \right)} \cos{\left(x \right)}} - \cos{\left(\theta \right)}\right)\, dx$$$.
The trigonometric functions expect the argument in radians. To enter the argument in degrees, multiply it by pi/180, e.g. write 45° as 45*pi/180, or use the appropriate function adding 'd', e.g. write sin(45°) as sind(45).
Please try a new game Rotatly