Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{20}^{90}\left( 120040 - \frac{6002 x}{5} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(120040 - \frac{6002 x}{5}\right)d x}=\frac{3001 x \left(200 - x\right)}{5}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=90\right)}=5941980$$$
$$$\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=20\right)}=2160720$$$
$$$\int_{20}^{90}\left( 120040 - \frac{6002 x}{5} \right)dx=\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=90\right)}-\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=20\right)}=3781260$$$
Answer: $$$\int_{20}^{90}\left( 120040 - \frac{6002 x}{5} \right)dx=3781260$$$