Kalkylator för bestämda och oegentliga integraler

Beräkna bestämda och oegentliga integraler steg för steg

Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{2}^{1}\left( \frac{\ln{\left(x \right)}}{x^{2}} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\frac{\ln{\left(x \right)}}{x^{2}} d x}=\frac{- \ln{\left(x \right)} - 1}{x}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{- \ln{\left(x \right)} - 1}{x}\right)|_{\left(x=1\right)}=-1$$$

$$$\left(\frac{- \ln{\left(x \right)} - 1}{x}\right)|_{\left(x=2\right)}=- \frac{1}{2} - \frac{\ln{\left(2 \right)}}{2}$$$

$$$\int_{2}^{1}\left( \frac{\ln{\left(x \right)}}{x^{2}} \right)dx=\left(\frac{- \ln{\left(x \right)} - 1}{x}\right)|_{\left(x=1\right)}-\left(\frac{- \ln{\left(x \right)} - 1}{x}\right)|_{\left(x=2\right)}=- \frac{1}{2} + \frac{\ln{\left(2 \right)}}{2}$$$

Answer: $$$\int_{2}^{1}\left( \frac{\ln{\left(x \right)}}{x^{2}} \right)dx=- \frac{1}{2} + \frac{\ln{\left(2 \right)}}{2}\approx -0.153426409720027$$$


Please try a new game Rotatly