Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{x}\left( 2 \sin{\left(2 t \right)} \right)dt$$$
First, calculate the corresponding indefinite integral: $$$\int{2 \sin{\left(2 t \right)} d t}=- \cos{\left(2 t \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- \cos{\left(2 t \right)}\right)|_{\left(t=x\right)}=- \cos{\left(2 x \right)}$$$
$$$\left(- \cos{\left(2 t \right)}\right)|_{\left(t=0\right)}=-1$$$
$$$\int_{0}^{x}\left( 2 \sin{\left(2 t \right)} \right)dt=\left(- \cos{\left(2 t \right)}\right)|_{\left(t=x\right)}-\left(- \cos{\left(2 t \right)}\right)|_{\left(t=0\right)}=1 - \cos{\left(2 x \right)}$$$
Answer: $$$\int_{0}^{x}\left( 2 \sin{\left(2 t \right)} \right)dt=1 - \cos{\left(2 x \right)}$$$