Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{x}\left( \frac{1}{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{1}{x} d x}=\ln{\left(\left|{x}\right| \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=x\right)}=\ln{\left(\left|{x}\right| \right)}$$$
$$$\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=0\right)}=-\infty$$$
$$$\int_{0}^{x}\left( \frac{1}{x} \right)dx=\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=x\right)}-\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=0\right)}=\ln{\left(\left|{x}\right| \right)} + \infty$$$
Answer: $$$\int_{0}^{x}\left( \frac{1}{x} \right)dx=\ln{\left(\left|{x}\right| \right)} + \infty$$$